

Reducing uncertainty for the estimation of hydropower potential – the use of local data

Tracey Haxton & Andy Young

Joule Programme Project: North West Hydro Model – Joule Centre, George Aggiddis (Lancaster University) & David Howard (CEH)

WHS Joule Centre: North West Hydro Model

- Reducing barriers to hydropower development in the North West: a multi-disciplinary approach
- The Hydrology work package:
 - Development of a formal framework for acquisition and incorporation of local data within the Low flows estimation framework
 - Improving FDC information that can be extracted from short record at-site data:
 - Guidance for best use of analogue gauges
 - Development of regional linking equations

WHS Hydrology and Hydropower

WHS The Problem

• The Ideal

- Long record measurement
- Of good hydrometric quality
- Known artificial component of river flow

- The Reality
 - No at site measurement
 - Short record data?
 - Suitable gauged analogue?

WHS Sources of Flow Information

- LowFlows Software FDC estimation within ungauged catchments
- Local data to corroborate/improve the flow estimates
 - Formal incorporation of Local Data in ungauged flow estimation.
 - Transposing flow data
 - Use of at site measurements
- Long Term Good Quality Gauging Station Data

Rapid

WHS The LowFlows Software

WHS Analogue catchments

WHS What makes a good analogue?

- Close in proximity (less than 50km)
- Similar climatology
- Similar catchment area (<factor 2)
- Hydrogeologically similar (HOSTBFI < 0.1)
- Nested with site (common component of flow)

WHS Transposition of flow data

adjacent Analogues

Estimation method	Flow statistic (m ³ s ⁻¹)	Percentage prediction uncertainty (at 68% confidence level)
Transpose by catchment	MF	±28
Area and AAR	Q95	±98
Estimated using	MF	±11
Low Flows 2000	Q95	±45

Nested Analogues

Flow statistic (m ³ s ⁻¹)	Percentage prediction uncertainty (at 68% confidence level)
MF	±16
Q95	±38
MF	±11
Q95	±45
	Flow statistic (m ³ s ⁻¹) MF Q95 MF Q95

Choose your analogue wisely!

WHS Incorporation of Local Data: Catchment configurations

WHS Incorporation of local data: approach

Upstream local data

- Identify non-nested upstream gauges.
- Estimate flow statistics for incremental catchment area.
- Combine upstream gauged flows and flows from the incremental catchment area to give flows at site.
- Downstream local data
 - Indentify non-nested parallel gauged catchments
 - Estimate flows by "subtracting" the incremental catchment flows and parallel gauged flows from the downstream site.

WHS Local data: preliminary results

WHS At site measurement: continuous measurement

- Continuous measurement of flows over a 6-12mth period
 - Provides a lot of information
 - BUT prone to sampling error (and measurement error!)
 - 6 months commonly used......we would recommend a year of data.

WHS Assigning percentiles to days from a short record

- •Selected flows on falling limb of the hydrograph
- •Each days flow treated as a spot gauging
- •Log normality assumed for flow distribution
- •Fitted relationship
- •Relationship used to predict FDC

An example from the North West of England

WHS

	74006	74007	
Area	43.87km ²	70.03 km ²	
BFIHOST	0.42	0.42	
Mean Flow	1.84m ³ /s 4.43m ³ /s		
Q95	0.32m ³ /s	0.37m ³ /s	

Treat 74006 as ungauged and estimate from 74007

WHS Results

		MF (m ³ /s)	Difference (m ³ /s)	Q95 (m ³ /s)	Difference (m ³ /s)
	Long record gauged values at site	1.84		0.32	
1	LowFlows software	2.11	-0.27	0.25	0.07
2	1 Year of Data and record extension	1.73	0.11	0.12	0.20
3	Transposing by SAAR and Area	2.18	<u>-0.34</u>	0.18	<u>0.14</u>
4a	Estimation with 1 Spot Gauge values at Q95			0.43	-0.11
4b	Estimation with an average of 5 Spot Gauge values at Q95			0.38	-0.06

The choice of method & analogue strongly influences the answer! Whilst we advocate the use of local data, hydrological expertise is required to minimise the chance of getting a worse result!

WHS Thank You!